Clinical Outcomes & Recognition
Surgical Volumes
Quality Measures

Meet Our Cardiac Surgeons
Sabet Hashim, MD
Robert C. Hagberg, MD
Mohiuddin Cheema, MD
Ayyaz A. Ali, MD, PhD
Jonathan A. Hammond, MD
David Yaffee, MD
David Underhill, MD
Daniel S. Fusco, MD
Sheelagh M. Pousatis, MD
Rafael P. Squitieri, MD

Research & Innovations
Reducing Operative Times and Direct Hospital Costs with Right Mini-Thoracotomy Mitral Valve Repair
Using Machine Learning to Predict Mitral Valve Surgery Outcomes
Defining Carotid Access as the Optimal Alternative Access Approach for Transcatheter Aortic Valve Replacement
Reducing Perioperative Bleeding for Coronary Artery Bypass Surgery with Appropriate Thienopyridine Discontinuation
Using ERAS to reduce Racial and Ethnic Disparities Associated with Coronary Artery Bypass Grafting
Expanding the Boundaries of Heart Transplantation
Understanding Heart Transplant Outcomes of Patients on Biventricular Mechanical Support
Defining ECMO use Post Cardiac Surgery
About Hartford HealthCare

With 36,000 colleagues, Hartford HealthCare’s unified culture enhances access, affordability, equity and expertise. Its care delivery system — with more than 400 locations serving 185 towns and cities — includes two tertiary-level teaching hospitals, an acute-care community teaching hospital, an acute-care hospital and trauma center, three community hospitals, a behavioral health network, a multispecialty physician group, a clinical care organization, a regional home care system, an array of senior care services, a mobile neighborhood health program and a comprehensive physical therapy and rehabilitation network. On average, Hartford HealthCare touches more than 17,000 lives every single day. The unique, system-wide institute model offers a unified high standard of care in crucial specialties at hospital and ambulatory sites across Connecticut, providing unparalleled expertise at the most affordable cost. The institutes include: cancer, heart and vascular, digestive health, Ayer Neuroscience, orthopedics and Tallwood Urology.

About the Hartford HealthCare Heart & Vascular Institute

The Hartford HealthCare Heart & Vascular Institute is a national leader in cardiovascular disease prevention, treatment and research, bringing together the expertise of more than 400 physicians and providers in 55 locations and seven acute care hospitals in Connecticut and southwestern Rhode Island. With a focus on innovation, cutting-edge technology, and clinical research, the Institute aims to deliver the highest quality cardiovascular care to patients. Its providers’ expertise span every cardiovascular specialty including clinical cardiology, cardiac and cardiothoracic surgery, electrophysiology, advanced heart failure, interventional cardiology, structural heart diseases and vascular surgery. The Institute is home to many “firsts” in cardiac surgery in Connecticut, notably the first coronary artery bypass graft in 1968, the first successful heart transplant in 1984, and the first balloon-expandable transcatheter aortic valve replacements (TAVR) procedure in 2012. Additionally, the Institute has earned distinguished international three-star ratings from the Society of Thoracic Surgeons for its patient care and outcomes in aortic valve replacement, coronary artery bypass grafting, and mitral valve replacement and repair, which denote the highest possible achievement for any institution.
Our Values

Caring

We Do the Kind Thing

Every Hartford HealthCare colleague touches the lives of the patients and families in our care. We treat those we serve and each other with kindness and compassion and strive to better understand and respond to the needs of a diverse community.

Equity

We Do the Just Thing

We commit to the fair treatment, access, opportunity and advancement for all. We value the uniqueness of each person and embrace diverse backgrounds, opinions and experiences. We foster intellectual, racial, social and cultural diversity and treat everyone with dignity and respect. Our customers, patients and colleagues experience Hartford HealthCare’s culture of belonging.

Excellence

We Do the Best Thing

In Hartford HealthCare, only the best will do. We work as a team to bring experience, advanced technology and best practices to bear in providing the highest-quality care for our patients and families. We devote ourselves to continuous improvement, excellence, professionalism and innovation in our work.

Integrity

We Do the Right Thing

Our actions tell the world what Hartford HealthCare is and what we stand for. We act ethically and responsibly in everything we do and hold ourselves accountable for our behavior. We bring respect, openness and honesty to our encounters with patients, families and coworkers and support the well-being of the communities we serve.

Safety

We Do the Safe Thing

Patients and families have placed their lives and health in our hands. At Hartford HealthCare our first priority, and the rule of medicine, is to protect them from harm. We believe that maintaining the highest safety standards is critical to delivering high-quality care and that a safe workplace protects us all.
Dear Colleague,

Thank you for your interest in the Hartford HealthCare Heart & Vascular Institute’s Cardiac Surgery Clinical Outcomes & Innovation Report. In these pages, we are proud to share innovations and clinical breakthroughs; highlight our research and life-saving care; and provide data that supports the many national accolades our institute has earned.

Most important, though, is our unwavering commitment to making healthcare more accessible, affordable, equitable and excellent for everyone we are privileged to serve. Hartford HealthCare’s unique institute model of care makes it possible for us to keep these commitments to our communities.

Access: As a health system and as an institute, we are focused on improving access and eliminating inequities in how this life-saving care is delivered. Through our coordinated system of care, patients across Connecticut and south western Rhode Island have easy access to advanced cardiac surgical care through one of our 55 ambulatory locations and seven acute care facilities.

Affordability: Institute-wide efforts work to reduce post-operative complications, lower length of stay, reduce re-hospitalizations, enhance quality and lower overall cost of care. Through our commitment to community-based cardiology services — with direct access to the region’s top tertiary center for the most advanced care when needed — cardiac issues are detected, assessed and treated before they become more costly and severe. Hartford HealthCare continues to create and deliver more cost-effective and convenient care options, including our comprehensive ambulatory network.

Equity: Our multidisciplinary team is addressing disparities in clinical outcomes, and lowering morbidity and length of stay after procedures in historically underserved populations through innovation and collaboration.

Expertise: In 2022, our talented surgeons and support teams at Hartford Hospital and St. Vincent’s Medical Center alone performed nearly 2,300 surgical procedures while achieving patient outcomes that have exceeded the highest industry benchmarks in areas such as valve repair, valve replacement, coronary artery bypass grafting and transplant, just to name a few. This commitment to excellence has placed our cardiac surgical program among the most elite in the country.

Our vision is to be “most trusted for personalized coordinated care.” In this report, you will see how the Hartford HealthCare Heart & Vascular Institute’s team is bringing this vision to life through demonstrated patient outcomes, a fierce commitment to quality, safety and innovation, and ensuring that all of our patients receive the care they need where and when they need it most.

Thank you for reading. **You can learn more at HartfordHealthCare.org/heart.**
Dear Colleague,

I am proud to share with you the Hartford HealthCare Heart & Vascular Institute’s 2022 Clinical Outcomes and Innovations Report. In the following pages, you will see why our team’s fierce commitment to providing the highest quality care and inspiring innovation makes us one of the most elite cardiac surgery programs in the country.

Serving Hartford Hospital, St. Vincent’s Medical Center and patients throughout our seven-hospital health system and beyond, the program continues to be recognized nationally. In 2022, Hartford Hospital’s cardiac surgery team received the highest three-star rating from the Society of Thoracic Surgeons (STS) for its patient care and outcomes in coronary artery bypass grafting (CABG), mitral valve replacement/repair (MVRR), combined MVRR and CABG, transcatheter aortic valve replacement (TAVR), and combined aortic valve replacement (AVR) and CABG. Hartford Hospital was the only center in Connecticut to achieve a three-star rating in any category.

Hartford Hospital was also named one of America’s 50 Best Hospitals for Cardiac Surgery by Healthgrades and earned the Mitral Valve Repair Reference Center Award from the Mitral Valve Foundation and the American Heart Association for three years in a row. In 2021, the hospital was named The Joint Commission’s first Comprehensive Cardiac Center Certification in New England. And, our heart transplant program continues to exceed national one-year survival rates and has one of the highest organ acceptance rates, making Hartford Hospital one of the most progressive centers in the country.

In these pages, you will read about specific advances and innovation in cardiac surgery. In the field of mitral valve surgery, our investigators have shown that changes in operative technique can reduce hospital costs in patients undergoing minimally-invasive mitral valve repair versus those treated with a conventional sternotomy. In collaboration with the Massachusetts Institute of Technology, our investigators have used machine learning to develop a surgical risk model for mitral valve surgery that may be more accurate than the existing STS risk calculator for predicting mortality.

In the field of aortic valve replacement, Hartford Hospital has joined a small number of centers in the United States in pioneering the use of a transcarotid approach as the optimal surgical technique for TAVR patients requiring non-femoral vascular access. Hartford Hospital has been chosen as the first national training center for transcarotid TAVR in the United States.

You will also see how our team is working to address inequities in care and patient outcomes. Advances have focused on the efficacy of an Enhanced Recovery after Surgery (ERAS) clinical pathway in reducing postoperative morbidity and hospital length of stay. In partnership with anesthesiology, we have documented that ERAS may be a useful tool in reducing CABG results’ disparities in underserved communities.

In partnership with our cardiologists, cardiac anesthesiologists, advanced practitioners, perfusionists, and nurses, the Hartford HealthCare Heart & Vascular Surgery team continues to provide the highest quality care to our patients while helping to advance the field for years to come.

Message from the Chairman

Sabet Hashim, MD
Chairman of Cardiac Surgery
Co-Physician-in-Chief
Hartford HealthCare Heart & Vascular Institute
Clinical Outcomes
Clinical Outcomes

The Hartford HealthCare Heart & Vascular Institute’s cardiac surgery team offers the most comprehensive and coordinated care for surgical patients in the region. Backed by expert cardiologists, cardiac anesthesiologists, advanced practitioners, perfusionists, and nurses, our surgeons perform more than 2,200 procedures each year at our two centers at Hartford Hospital and St. Vincent’s Medical Center in Bridgeport.

2022 Surgical Volumes for Hartford Hospital and St. Vincent’s Medical Center

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Procedural Volume</td>
<td>1,973</td>
</tr>
<tr>
<td>Total Coronary Artery Bypass Grafting</td>
<td>689</td>
</tr>
<tr>
<td>Total Valve Volume</td>
<td>930</td>
</tr>
<tr>
<td>Surgical Aortic Valve Replacement</td>
<td>345</td>
</tr>
<tr>
<td>Transcatheter Aortic Valve Replacement</td>
<td>319</td>
</tr>
<tr>
<td>Mitral Valve Replacement</td>
<td>154</td>
</tr>
<tr>
<td>Mitral Valve Repair</td>
<td>137</td>
</tr>
<tr>
<td>Tricuspid Valve Replacement</td>
<td>10</td>
</tr>
<tr>
<td>Tricuspid Valve Repair</td>
<td>47</td>
</tr>
<tr>
<td>Atrial Septal Defect/PFO Closure</td>
<td>41</td>
</tr>
<tr>
<td>MAZE Procedure</td>
<td>135</td>
</tr>
<tr>
<td>Left Atrial Appendage Closure</td>
<td>169</td>
</tr>
<tr>
<td>Heart Transplants</td>
<td>27</td>
</tr>
<tr>
<td>ECMO</td>
<td>55</td>
</tr>
<tr>
<td>Long-Term Ventricular Assist Devices</td>
<td>6</td>
</tr>
</tbody>
</table>
Clinical Outcomes (continued)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Procedural Volume</td>
<td>280</td>
</tr>
<tr>
<td>Total Coronary Artery Bypass Grafting</td>
<td>160</td>
</tr>
<tr>
<td>Total Valve Volume</td>
<td>47</td>
</tr>
<tr>
<td>Surgical Aortic Valve Replacement</td>
<td>27</td>
</tr>
<tr>
<td>Transcatheter Aortic Valve Replacement</td>
<td>105</td>
</tr>
<tr>
<td>Mitral Valve Replacement</td>
<td>19</td>
</tr>
<tr>
<td>Mitral Valve Repair</td>
<td>15</td>
</tr>
<tr>
<td>Tricuspid Valve Replacement</td>
<td>2</td>
</tr>
<tr>
<td>Tricuspid Valve Repair</td>
<td>2</td>
</tr>
<tr>
<td>Atrial Septal Defect/PFO Closure</td>
<td>2</td>
</tr>
<tr>
<td>MAZE Procedure</td>
<td>13</td>
</tr>
<tr>
<td>Left Atrial Appendage Closure</td>
<td>7</td>
</tr>
<tr>
<td>ECMO</td>
<td>2</td>
</tr>
</tbody>
</table>
National Recognition
Nationally Recognized for Quality

The Hartford HealthCare Heart & Vascular Institute is a national leader in cardiac surgery and is consistently rated among the best programs in the country for the quality of care we deliver.

Latest Quality Ranking by the Society of Thoracic Surgery

Twice a year, the Society of Thoracic Surgeons (STS) provides cardiac surgery performance ratings of hospitals in the United States. The rating applies to five categories, and Hartford Hospital has achieved the maximum “3 STAR” rating in four out of five categories for the latest 2021 and 2022 rankings. Achievement of the 3 STAR rating for any one of these categories places a hospital in the top performing 4-9% of all hospitals participating in the STS national database. By attaining the highest STS rankings in multiple surgical categories, Hartford Hospital is placed among the most elite cardiac surgery centers in the country.
Hartford HealthCare Heart & Vascular Institute at Hartford Hospital Named Among America’s 50 Best for Cardiac Surgery

Hartford Hospital has been named one of America’s 50 Best Hospitals for Cardiac Surgery according to new research released by Healthgrades, the leading resource that connects consumers, physicians and health systems.

Every year, Healthgrades evaluates hospital performance at nearly 4,500 hospitals nationwide for 32 of the most common inpatient procedures and conditions using Medicare data, and outcomes in appendectomy and bariatric surgery using all-payer data provided by 16 states.

U.S. News & World Report Rates Hartford Hospital Best in Hartford Metro Area

Hartford Hospital is rated as the No. 1 hospital in the Hartford Metro Area and among the best hospitals in Connecticut for 2022-23 by U.S. News & World Report. US News & World Report also ranks the hospital as “high performing” in both heart bypass surgery and aortic valve surgery.

The Joint Commission’s First Comprehensive Cardiac Center in New England

The Hartford HealthCare Heart & Vascular Institute at Hartford Hospital has earned The Joint Commission’s Comprehensive Cardiac Center (CCC) Certification, becoming the first cardiac program in New England and one of 16 nationally to be awarded this prestigious designation.

Offered in collaboration with the American Heart Association, Comprehensive Cardiac Center Certification is the premier cardiovascular certification awarded to hospitals that demonstrate high-quality care using evidence-based, guidelines-driven treatment and foster collaboration throughout the system of care.
Meet Our Cardiac Surgeons
Biography

Sabet Hashim, MD, is best known for his expertise in mitral valve repair. Before becoming chairman of cardiac surgery and co-physician-in-chief of the Hartford HealthCare Heart & Vascular Institute in 2016, Dr. Hashim was director of cardiac valve surgery for a decade at Yale New Haven Hospital. While there, he performed New England’s first mitral valve repair in 1984. That same year, Dr. Hashim performed the first heart transplant in Connecticut.

Dr. Hashim developed one of the first mitral valve repair programs in the United States. He has pioneered techniques in minimally-invasive aortic and mitral valve surgery. Dr. Hashim has consistently maintained the largest mitral valve practice in Connecticut and has performed more than 2,000 mitral valve repairs and 10,000 open-heart procedures. He has served as a primary investigator on several trials, including SurTAVI, COAPT, Apollo and Commence.

Dr. Hashim has received numerous professional honors and awards, has presented his work at national and international forums and has published extensively in peer-reviewed journals.

Areas of Expertise

Aortic valve replacement, coronary artery bypass surgery, heart valve surgery, inherited cardiovascular diseases, mini invasive aortic and mitral surgery, mitra clip for mitral regurgitation, mitral valve repair, repair of ischemic mitral regurgitation, surgery for hypertrophic obstruction cardiomyopathy (HOCM), transcatheter mitral valve repair (TMVR).

Contact

Hartford Hospital
85 Seymour Street, Suite 919
Hartford, CT 06106
ph 860.696.5520
fx 860.522.3951

St. Vincent’s Medical Center
2800 Main Street
Bridgeport, CT 06606
ph 203.576.5708
fx 203.367.8392
Volume and Quality of Mitral Valve Surgery at Hartford HealthCare

Under the leadership of Dr. Hashim, mitral valve repair and replacement have grown at Hartford HealthCare over the last five years.

As a testament to Hartford Hospital’s mitral valve repair outcomes, the hospital received the Mitral Valve Repair Reference Center Award from the American Heart Association in 2021 and 2022. This award identifies the nation’s best hospitals and surgeons for mitral valve repair surgery based on objective performance measures. This special recognition is achieved by demonstrating a record of superior clinical outcomes, as well as an ongoing commitment to reporting and measuring quality and performance metrics specific to mitral valve repair. Hartford Hospital was the 10th center recognized in the U.S. and the first in New England.
The STS Composite Quality Rankings for Mitral Valve Repair/Replacement and for Mitral Valve Repair/Replacement with Coronary Artery Bypass for the period ending December 2021

Mitral Valve Repair/Replacement:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Rating</th>
<th>Participant Score</th>
<th>95% CI</th>
<th>STS Score</th>
<th>Min - Max</th>
<th>10th</th>
<th>50th</th>
<th>90th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>⭐⭐⭐⭐⭐</td>
<td>97.11%</td>
<td>(96.18-97.90)</td>
<td>93.85%</td>
<td>(82.83-97.96)</td>
<td>90.81%</td>
<td>94.04%</td>
<td>96.11%</td>
</tr>
<tr>
<td>Absence of Mortality</td>
<td>⭐⭐⭐⭐⭐</td>
<td>98.62%</td>
<td>(97.71-99.29)</td>
<td>96.85%</td>
<td>(89.85-99.21)</td>
<td>95.00%</td>
<td>97.09%</td>
<td>99.29%</td>
</tr>
<tr>
<td>Absence of Morbidity</td>
<td>⭐⭐⭐⭐</td>
<td>91.33%</td>
<td>(90.06-93.71)</td>
<td>85.85%</td>
<td>(70.03-94.30)</td>
<td>80.84%</td>
<td>86.27%</td>
<td>90.30%</td>
</tr>
</tbody>
</table>

Mitral Valve Repair/Replacement with Coronary Artery Bypass Grafting:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Rating</th>
<th>Participant Score</th>
<th>95% CI</th>
<th>STS Score</th>
<th>Min - Max</th>
<th>10th</th>
<th>50th</th>
<th>90th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>⭐⭐⭐⭐⭐</td>
<td>98.71%</td>
<td>(97.68-99.12)</td>
<td>85.00%</td>
<td>(66.26-94.26)</td>
<td>79.31%</td>
<td>85.51%</td>
<td>89.98%</td>
</tr>
<tr>
<td>Absence of Mortality</td>
<td>⭐⭐⭐⭐⭐</td>
<td>95.96%</td>
<td>(93.32-97.91)</td>
<td>92.12%</td>
<td>(76.54-97.55)</td>
<td>87.07%</td>
<td>92.64%</td>
<td>95.57%</td>
</tr>
<tr>
<td>Absence of Morbidity</td>
<td>⭐⭐⭐</td>
<td>78.37%</td>
<td>(72.68-83.52)</td>
<td>72.70%</td>
<td>(52.67-86.89)</td>
<td>65.31%</td>
<td>73.07%</td>
<td>79.61%</td>
</tr>
</tbody>
</table>
Current Participation in Research Trials
During the course of his career, Dr. Hashim has served as a principal investigator on multiple national and international research trials. In the past, he served as a primary investigator for the sentinel SurTAVI trial assessing the use of transcatheter aortic valve replacement in patients with intermediate surgical risk, as well as the landmark COAPT trial assessing the safety and efficacy of MitraClip mitral valve repair in patients with secondary mitral regurgitation. Currently, he is the co-primary investigator for the APOLLO Trial.

The Medtronic APOLLO Trial is designed to evaluate the safety and efficacy of the Intrepid Transcatheter Mitral Valve Replacement System for patients with symptomatic moderate-to-severe or severe mitral regurgitation who are unsuitable for traditional mitral valve surgery. This system integrates self-expanding stent technology with a tissue heart valve, pictured at left, to facilitate minimally-invasive, catheter-based implantation. The prosthesis is compressed inside a hollow delivery catheter and implantation is completed through trans-apical access. It is designed to engage and conform to the native annulus without need for additional sutures, tethers, or anchors.

2022 Peer-Reviewed Research Publications

Robert C. Hagberg, MD
Chief of Cardiac Surgery
Hartford Hospital

Biography

Robert C. Hagberg, MD, currently serves as the chief of cardiac surgery at Hartford Hospital. Dr. Hagberg received his undergraduate and medical degrees at Stanford University. Following medical school, he completed a residency at Massachusetts General Hospital and subsequently returned to Stanford to complete a cardiothoracic fellowship. Following his fellowship, he entered private practice in Norfolk, Va., where he acted as investigator for a number of device trials in cardiac and vascular surgery, including several valve and stent graft trials, which eventually led to FDA approval. He then went on to join the surgical staff at Beth Israel Deaconess Medical Center/Harvard Medical School in Boston, where he was an assistant professor of surgery. There, he taught the clinical practice of cardiac surgery to Harvard medical students and general surgical residents, as well as cardiothoracic surgical residents and fellows.

Dr. Hagberg is a nationally renowned surgeon, researcher and educator who has elevated Hartford Hospital’s cardiac surgery program, contributed to cardiac surgery research, expanded cardiac surgical procedures and helped train the next generation of advanced heart surgeons.

Education

Internship
Stanford University School of Medicine

Graduate School
Stanford University

Medical School
Stanford University School of Medicine

Residency
Massachusetts General Hospital

Undergraduate
Stanford University

Areas of Expertise

Contact

Hartford Hospital
85 Seymour Street, Suite 919
Hartford, CT 06106
ph 860.696.5520
fx 860.522.3951
Volume and Quality of Aortic Valve Replacement at Hartford Hospital

Hartford Hospital's latest 3-Star TAVR rating from the STS/ACC TVT Registry:

<table>
<thead>
<tr>
<th>Year</th>
<th>TAVR Procedure Performed</th>
<th>My Hospital TAVR Volumes</th>
<th>Distribution of Annual Hospital TAVR Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>257</td>
<td>1660</td>
<td>0.0, 25th, 50th, 75th, 99th, Max Percentage</td>
</tr>
<tr>
<td>2018</td>
<td>215</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>253</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>276</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>295</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>320</td>
<td>331</td>
<td></td>
</tr>
</tbody>
</table>

TAVR 30 Day Composite includes the following categories:
1. 30-day death
2. 30-day stroke
3. 30-day life-threatening or major bleeding
4. Acute kidney injury (stage III)
5. 30-day moderate to severe paravalvular aortic regurgitation (PVR)
6. None of the above

Missing value (-) indicates that hospital does not meet eligibility criteria for reporting.
Current Participation in Research Trials:
Dr. Hagberg has served as the surgical primary co-investigator on multiple TAVR trials leading to the FDA approval of TAVR in high-intermediate- and low-risk patients, including the Cor Valve Pivotal Trial, SurTAVI Trial, Edwards Low Risk Trial, and the Edwards Low Risk Expanded Access. He also serves as the primary investigator for the OnX valve. OnX Registry, Terminate AF, PROACT Xa, and PEROGON Trial, as well as a co-investigator for the APOLLO Trial. His current research trials include the Evolut EXPAND TAVR II Pivotal Trial and the ALLIANCE Trial.

The Medtronic Evolut EXPAND TAVR II Pivotal Trial is designed to assess the use of the self-expanding, supra-annular Evolut valve TAVR in patients with symptomatic moderate aortic stenosis. This multi-center, international trial is the first randomized to evaluate patients with moderate aortic stenosis, a population currently not included in current AHA/ACC guidelines. Approximately 650 subjects will be enrolled worldwide.

The Edward's LifeSciences ALLIANCE trial is a prospective, single-arm, multicenter study designed to assess the safety and efficacy of a fourth-generation balloon expandable valve, the SAPIEN X4 Transcatheter Heart Valve, in patients with severe symptomatic aortic stenosis. The SAPIEN X4 Transcatheter Heart Valve system incorporates RESILIA tissue, a bovine pericardial tissue that incorporates a novel preservation technology which permanently blocks residual aldehyde groups known to bind calcium and preserves tissue with glycerol. This new X4 THV system design also includes adjustable valve sizing and radiopaque markers for commissure alignment. The Sapien X4 valve is expected to provide clinically significant improvements in hemodynamic, functional and quality of life outcomes with acceptable complication rates. Approximately 800 patients will be enrolled in this study across 65 sites and followed for approximately 10 years.

Recent Peer-Reviewed Publications
Biography

Mohiuddin Cheema, MD, received his medical degree from Aga Khan University Medical College in Sindh, Pakistan, in 1998. He completed his internship and residency in general surgery at the University of Connecticut in 2005, followed by a vascular surgery fellowship at Albany Medical Center between 2005 and 2007. He joined Hartford Hospital as a vascular surgeon in 2007 and served as the director of endovascular services, director of the Noninvasive Vascular Lab, and site director for the vascular surgery fellowship. Between 2013 and 2015, he completed a cardiothoracic surgery fellowship at Cedars Sinai Medical Center before returning to Hartford.

Education

Fellowship
Albany Medical Center
Cedars Sinai Medical Center

Internship
University of Connecticut

Medical School
Aga Khan University

Residency
University of Connecticut

Undergraduate
Cadet College Hasan-Abdal

Areas of Expertise

Contact

Hartford Hospital
85 Seymour Street, Suite 919
Hartford, CT 06106
ph 860.696.5520
fx 860.522.3951
Current Participation in Research Trials:
Board certified in both vascular and cardiothoracic surgery, Dr. Cheema has served as the primary investigator on multiple research trials involving both disciplines during his career. His current studies include the Tiomphe trial, Relay Pro-D, and Persevere. Notably, Dr. Cheema enrolled the first patient in the United States in the Persevere trial, a prospective, multicenter, non-randomized clinical trial consisting of approximately 100 participants in the U.S., who have experienced an acute DeBakey Type I aortic dissection. The trial is designed to assess the safety and efficacy of the AMDS aortic arch remodeling device. The design of the AMDS allows for rapid deployment of the graft in the aortic arch during a standard replacement of the ascending aorta, adding less than five minutes to the procedure time. The deployment of the AMDS preserves the native arch, potentially allowing for minimally-invasive re-interventions, including the repair of additional entry tears, rather than an invasive arch repair. Each participant will be followed for up to five years. The combined primary efficacy and safety endpoints will determine the impact of the AMDS Hybrid Prosthesis on reducing mortality, new disabling stroke, myocardial infarction, and new onset renal failure requiring dialysis, and also re-expansion of the true lumen of the aorta.

Pioneering the Optimal Alternative Access Route for TAVR
Following the initial FDA approval of TAVR use in 2011, Hartford Hospital initiated its TAVR program in 2012. Over the last 10 years, structural heart physicians have performed more than 2,500 TAVR procedures in extreme-risk, high-risk and intermediate-risk AS patients. Successful valve replacement has been performed with both balloon-expandable and self-expanding bioprostheses utilizing transfemoral, subclavian, carotid, direct aortic and transapical approaches. Under the leadership of Dr. Cheema, Hartford physicians have pioneered routine use of the transcarotid approach as the most commonly used alternative access technique.

Hartford Hospital Named National Training Destination for Carotid Approach to TAVR
Based upon the work of Dr. Cheema, Hartford Hospital has been selected as the first national training center for the carotid TAVR approach. Partnering with Edwards Lifesciences, physicians from across the country are currently being trained at the Hartford HealthCare Center for Education, Simulation and Innovation (CESI).
2020-2022 Carotid TAVR Publications

Ayyaz Ali, MD, is an internationally known cardiothoracic and transplant surgeon who joined Hartford Hospital in 2019. He received his MD ChB degree from the University of Leicester in 1998, his MRCS degree in surgery from the Royal College of Surgeons in 2001, and a PhD in transplantation from the University of Leicester in 2010. He was originally a consultant cardiac and transplant surgeon at Papworth Hospital in Cambridge, UK, where he performed the largest number of cardiopulmonary transplant operations of any individual surgeon in the United Kingdom. In 2018, he became the surgical director of heart transplantation and mechanical circulatory support at Yale New Haven Hospital where he lead a dramatic increase in the number of heart transplantations.

During the course of his career, Dr. Ali has performed more than 600 transplant operations, including heart transplant, single and double lung transplantation, and combined heart-lung transplantation. He is also skilled in the establishment of mechanical circulatory support for patients with severe heart failure having performed more than 91 implantations of temporary and durable ventricular assist devices.

Dr. Ali has had an extensive career in research, having served as cardiovascular research fellow at Stanford University from 2007 to 2009 and an associate research scientist at Columbia University from 2013 to present. He undertook basic science research at Stanford University and the University of Manitoba, forming the foundation of the clinical establishment of heart transplantation using Donation after Circulatory Death (DCD) donors. Supported by peer-reviewed grants, he helped develop an animal model of DCD donor heart resuscitation, and subsequently demonstrated that the heart can be resuscitated following circulatory arrest with good functional recovery. He helped further develop a model of porcine orthotopic heart transplantation in collaboration with the University of Manitoba, confirming that hearts resuscitated from DCD donors could be transplanted into the orthotopic position in a recipient animal with good circulatory support. His investigations led to development of a clinical program of DCD heart transplantation at Papworth Hospital, which quickly became the largest program in the world. DCD cardiac transplantation is now well established throughout the world with more than 400 of these procedures performed in the U.S. It is expected that 30-40% of all heart transplant procedures in the future will utilize a DCD donor heart. The research performed by Dr. Ali and his team was the foundation for this landmark achievement in cardiac transplantation.

Dr. Ali is the recipient of multiple research grants and research awards. He has extensively published in peer-reviewed journals with more than 65 manuscripts.

Education

Fellowship
- University of Pittsburgh Medical Center
- Duke University Medical Center

Graduate School
- Leicester University

Medical School
- Leicester University Medical School

Residency
- Papworth Hospital
- Cambridge, UK

Areas of Expertise

- Aortic surgery
- Coronary artery bypass surgery
- Heart transplantation
- Lung transplantation
- Mechanical circulatory support
- Valvular heart disease

Contact

Hartford Hospital

85 Seymour Street, Suite 919
Hartford, CT 06106

Phone: 860.696.5520

Fax: 860.522.3951
The latest report released by the Scientific Registry of Transplant Recipients in January 2021 highlights the Hartford Hospital heart transplant program’s performance, reporting key clinical outcomes. This report found Hartford Hospital’s one-year survival rate after heart transplantation to be 94.7%, which far exceeds the U.S. national average of 91.6%. Additionally, the report documented that the hospital’s organ acceptance ratio is 2.38 — one of the highest in the U.S. — identifying Hartford Hospital as one of the most progressive programs in the country with regards to accepting organs offered to it for heart transplantation. The organ acceptance ratio is based on the observed-versus-expected acceptances when a donor heart is offered to patients who are wait-listed at a specific transplant center. Accordingly, Hartford Hospital’s ratio of heart transplants performed compared to patients added to the waiting list in 2020 was 1.2, the highest in the U.S. This exemplifies the program’s efficiency and ability to deliver heart transplantation to those patients who are added to its waiting list, demonstrating the Institute’s commitment to increasing access to heart transplantation to those patients who suffer from advanced heart failure.

2021-22 Transplant Peer-Peer Reviewed Publications

Biography

Jonathan Hammond, MD, graduated magna cum laude with a bachelor of arts degree in 1980 from Williams College, and then went on to receive his MD degree from Harvard Medical School in 1984. Following a residency in general surgery at Hartford Hospital/University of Connecticut between 1984 and 1989 and a Cardiothoracic Surgery residency at the Medical College of Wisconsin between 1989 and 1991, he joined the staff at Hartford Hospital. In the past, he has served as surgical director for the mechanical circulatory support program, the surgical director of the cardiac transplant program, and director of the Division of Cardiovascular Surgery.

Areas of Expertise

Acute pulmonary embolism, coronary artery bypass surgery, extracorporeal membrane oxygenation, heart transplantation, heart valve surgery, maze and mini maze for atrial fibrillation, mechanical circulatory support, open thoracic aortic surgery, pacemakers.

Contact

Hartford Hospital
85 Seymour Street, Suite 919
Hartford, CT 06106
ph 860.696.5520
fx 860.522.3951
Time Course and Outcomes of ERAS Implementation for Cardiac Surgery

Enhanced Recovery After Surgery (ERAS) is a multidisciplinary approach to the care of surgical patients that has been demonstrated to reduce postoperative morbidity, improve postoperative recovery, and reduce overall costs associated with surgical care. Originally introduced in 1997, ERAS protocols currently exist in many surgical specialties and consensus guidelines for ERAS in cardiac surgery were published in 2019. In 2018 under the leadership of Drs. Hammond and Hashim, a Hartford Hospital institutional cardiac surgery ERAS clinical pathway was constructed by a multi-disciplinary team of cardiac anesthesiologists, cardiac surgeons, cardiac surgery intensivists, perioperative nurses, respiratory therapists, pharmacists, blood bank experts, and physical therapists. Following review of previously published ERAS guidelines, best practice policies were instituted to achieve perioperative ERAS goals regarding pre-habilitation, smoking and hazardous alcohol cessation, avoidance of preoperative dehydration, carbohydrate loading, perioperative goal-directed fluid therapy, multi-modal non-opioid analgesia, glycemic control, medication use (e.g., antibiotics, beta blockers, statins, aspirin), intraoperative anesthetic use, avoidance of persistent postoperative hypothermia, maintenance of chest tube patency, early postoperative enteral feeding and mobilization, and transitional planning. During the course of the 6-month ERAS rollout, specific strategies to promote early extubation, decreased ICU and hospital LOS, and decreased likelihood of re-intubation and ICU readmission were also implemented.

To-date, the beneficial impact of ERAS has been documented primarily in patients undergoing coronary artery bypass grafting.

![Graph showing Total CABG from 2013 to 2022](chart.png)
Following implementation of ERAS, there have been significant reductions in postoperative length of stay, total ventilation hours and need for ICU readmission.

2022 ERAS Publications

Biography

David Yaffee, MD, graduated summa cum laude in 2004 with bachelor of arts and master of arts degrees in chemistry. He received his MD degree from New York University School of Medicine in 2008, where he also completed his general surgery residency in 2015 and cardiothoracic surgery residency in 2017. Throughout his training, Dr. Yaffee has had a dedicated interest in clinical research, serving as a post-doctoral research fellow in the Department of Cardiac Surgery at New York University School of Medicine between 2011 and 2013. He is extensively published in peer-reviewed journals.

Areas of Expertise

Established a Center of Excellence for Treating Hypertrophic Cardiomyopathy:

Hypertrophic cardiomyopathy (HCM) is a diverse disease resulting in left ventricular muscle hypertrophy and derangements in the mitral valve and the mitral subvalvular apparatus. Symptoms are the result of dynamic left ventricular outflow tract obstruction and may be debilitating. Due to the wide range of disease phenotypes, surgical treatment of HCM is often complex, and must be tailored to each individual patient to prevent the high failure rates seen at centers without specific HCM surgical expertise.

Having trained with one of the world’s expert, Dr. Yaffee specializes in the surgical treatment of HCM. He is currently collaborating with Adaya Weissler-Snir, MD, a nationally known medical HCM specialist, to develop a regional center of excellence at Hartford Hospital for the multimodal treatment of HCM. Dr. Yaffee has also partnered with Dr. Hashim on specific patients who require concomitant complex mitral valve repair in addition to extended septal myectomy for the treatment of their HCM.

Contact

Hartford Hospital
85 Seymour Street, Suite 919
Hartford, CT 06106
ph 860.696.5520
fx 860.522.3951
Recent Research Publications

Biography

David Underhill, MD, graduated magna cum laude with a bachelor of arts in biology from Providence College in 1976 before receiving his MD from the University of Vermont Medical School in 1980. He went on to perform his general surgery internship and residency at Tufts New England Medical Center between 1980 and 1987, including serving as a cardiac surgery research fellow at the National Heart-Lung Blood Institute between 1983 and 1985, and chief general surgery resident at Tufts between 1986 and 1987.

He completed his training in thoracic surgery at the University of Michigan in 1989 before joining the staff at Hartford Hospital in 1992.

Areas of Expertise

Contact

Hartford Hospital
85 Seymour Street, Suite 919
Hartford, CT 06106
ph 860.696.5520
fx 860.522.3951
Expanding ECMO Indications

Working in concert with Jason Gluck, DO, and other physicians from the Advanced Heart Failure and Mechanical Circulatory Support Department at Hartford Hospital, Dr. Underhill has been a leader in the use of ECMO, including ECMO-On-The-GO, at Hartford HealthCare.

Total ECMO Volumes at Hartford Hospital

<table>
<thead>
<tr>
<th>Year</th>
<th>Total ECMO</th>
<th>ECMO On The GO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>2015</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>2016</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td>2017</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>2018</td>
<td>52</td>
<td>14</td>
</tr>
<tr>
<td>2019</td>
<td>51</td>
<td>20</td>
</tr>
<tr>
<td>2020</td>
<td>73</td>
<td>35</td>
</tr>
<tr>
<td>2021</td>
<td>62</td>
<td>19</td>
</tr>
<tr>
<td>2022</td>
<td>55</td>
<td>15</td>
</tr>
</tbody>
</table>

2021-22 ECMO Peer-Reviewed Publications

Biography

Daniel S. Fusco, MD, received a bachelor of science degree in engineering from the University of Connecticut in 1986 and a master of science degree in electrical engineering from Worcester Polytechnic Institute in 1993. Between 1986 and 1990, he also worked for the General Electric Company in various departments as an Edison engineer including, the Aircraft Instruments and Underwater Warfare divisions.

He went on to receive his medical degree from the University of Connecticut School of Medicine in 1995, followed by completion of a General Surgery internship and residency at Baystate Medical Center between 1995 and 2000, a Thoracic Surgery residency at Virginia Commonwealth University between 2000 and 2002, and a Fellowship in Heart Transplantation and Aortic Surgery at Yale University between 2002 and 2005. He has since served as a board-certified cardiothoracic surgeon at the University of Connecticut John Dempsey Hospital, Hartford Hospital and St. Vincent's Medical Center.

Education

- Fellowship
 - Medical College of Virginia
 - Yale New Haven Hospital
- Graduate School
 - Worcester Polytechnic Institute
- Internship
 - Baystate Medical Center (MA)
- Medical School
 - University of Connecticut School of Medicine
- Undergraduate
 - University of Connecticut

Areas of Expertise

Coronary artery bypass surgery, extra corporeal membrane oxygenation, heart transplantation, heart valve surgery, maze and mini maze for atrial fibrillation, mechanical circulatory support, open thoracic aortic surgery, pacemakers, surgery for hypertrophic obstruction cardiomyopathy (HOCM).

Contact

St. Vincent's Medical Center
2800 Main Street, Main Floor
Bridgeport, CT 06606
ph 203.576.5708
fx 203.367.8392
Surgical Treatment of Atrial Fibrillation:
Among his many areas of expertise, Dr. Fusco has focused on the surgical treatment of atrial fibrillation with the MAZE procedure with and without concomitant left atrial appendage exclusion using the AtriClip. In addition, he has performed hybrid ablation and the convergent ablation procedures performed as a multidisciplinary approach with electrophysiologists. During his time at Hartford Hospital, he has contributed significantly to the increasing surgical volume of patients treated for chronic atrial fibrillation.

Recent Research Publications:

Recent Research Publications

Biography

Sheelagh M. Pousatis, MD, graduated magna cum laude from Muhlenberg College with a bachelor of science degree in biology in 2011, where she completed the Muhlenberg Scholars Honor Program. She went on to receive her MD degree from Georgetown University School of Medicine in 2015, and then completed a six-year integrated thoracic surgery residency at the University of Maryland Medical Center between 2015 and 2021. Joining Hartford HealthCare in 2021, Dr. Pousatis has had extensive training in adult cardiac surgery with a special focus on mitral valve repair, as well as transcatheter techniques including transcatheter aortic valve replacement, MitraClip mitral valve repair and TEVAR.

Areas of Expertise

Contact

Hartford Hospital
85 Seymour Street, Suite 919
Hartford, CT 06106
ph 860.696.5520
fx 860.522.3951

Education

Internship
University of Maryland Medical Center

Medical School
Georgetown University School of Medicine

Residency
University of Maryland Medical Center

Areas of Expertise

- Aortic valve replacement
- Coronary artery bypass surgery
- Endovascular treatment of thoracic aortic disease
- Heart valve surgery
- Maze procedure
- Mechanical circulatory support
- MitraClip for mitral regurgitation
- Mitral valve repair
- Mitral valve replacement/repair
- Open thoracic aortic surgery
- Transcatheter aortic valve replacement (TAVR)
- Transcatheter mitral valve repair (TMVR)
Recent Research Publications

Biography

Rafael P. Squitieri, MD, received his bachelor of arts undergraduate degree from Columbia College in 1989 and his MD degree from Mount Sinai School of Medicine in 1993. He performed his general surgery residency at Morristown Memorial Hospital between 1993 and 1998, where he served as chief resident, and his cardiothoracic surgery residency at Mount Sinai Medical Center between 1998 and 2001. He joined St. Vincent's Medical Center in 2001, where he has worked as a board-certified cardiothoracic surgeon. He currently serves as the chief of cardiothoracic surgery and chairman of the Department of Cardiovascular Services.

Dr. Squitieri has been the principal leader in the develop of cardiothoracic surgery at St. Vincent's Medical Center and has worked closely with hospital's interventional cardiologists to develop a vigorous structural heart program. He has received numerous honors and awards for his service, published multiple articles in peer-reviewed journals, and is the holder of multiple medical patents.

Areas of Expertise

Coronary artery bypass surgery, transcatheter aortic valve replacement (TAVR).

Contact

St. Vincent's Medical Center
2800 Main Street, Main Floor
Bridgeport, CT 06606
ph 203.576.5708
fx 203.367.8392

Education

Fellowship
Morristown Memorial Hospital

Internship
Morristown Memorial Hospital

Medical School
Mount Sinai Ichan School of Medicine

Residency
Morristown Memorial Hospital

Rafael P. Squitieri, MD
Chief, Cardiothoracic Surgery, St Vincent’s Medical Center; Vice Chairman, Cardiac Surgery, Hartford HealthCare Heart & Vascular Institute, Co-Director, Hybrid Atrial Fibrillation Program, St. Vincent’s Medical Center
Research & Innovation

The Hartford HealthCare Heart & Vascular Institute (HVI) Research Program supports and facilitates the growth of heart and vascular research, promotes interdisciplinary collaboration between investigators and helps inform our patients about access to new and novel treatment options.

This serves as a resource for investigators, patients and potential sponsors interested in learning and potentially becoming involved in current HVI research endeavors. It is our privilege to support our clinicians and research colleagues as they contribute to advances in cardiovascular and vascular medicine and improved care for our patients.
Reducing Operatives Times and Direct Hospital Costs with Right Mini-Thoracotomy Mitral Valve Repair

Over the last four decades, minimally-invasive mitral valve (MV) repair through a right mini-thoracotomy (RT) approach has yielded excellent long-term results and has emerged as an appealing alternative to conventional median sternotomy (MS). Compared with MS, the RT technique has been associated with reduced patient morbidity, shorter hospital length of stay and improved patient satisfaction. However, previous studies have reported that RT is more technically challenging, requiring longer cross-clamp, cardiopulmonary bypass, and total operative times. The effect of RT on total hospital costs has been variable, yet surgical supply and operating room expenses have consistently been higher.

In a 2022 report by Sabet Hashim, MD, a propensity-matched comparison between 108 RT and 108 MS patients undergoing MV repair for myxomatous mitral regurgitation demonstrated shorter total ventilation times, less postoperative atrial fibrillation, and a shorter hospital length of stay in the RT cohort. Notably, RT and MS patients had similar cross-clamp times, with no significant differences in hospital outcomes and late clinical follow-up. Among the advances in surgical technique detailed by Dr. Hashim leading to shorter operative times were three time-saving methodologies, including the tendency to restrict posterior leaflet resection, a targeted employment of NeoChords resulting in fewer implanted NeoChords per patient, and use of the posterior imbrication technique in lieu of the sliding leaflet technique to prevent SAM. Additionally, Dr. Hashim reported that direct total hospital costs were lower for the RT group, with reductions in RT postoperative charges offsetting increased operating room costs.
Using Machine Learning to Predict Mitral Valve Surgery Outcomes

In concert with investigators from the Massachusetts Institute of Technology Operations Research Center and Sloan School of Management and the USC Marshall School of Business, Robert Hagberg, MD, published a 2022 study entitled “Machine Learning Models for Mitral Valve Replacement: A Comparative Analysis with the Society of Thoracic Surgeons Risk Model” (J Card Surg. 2021 Oct 20). Operative risk for patients who are currently referred for mitral valve surgery typically is assessed using the Society of Thoracic Surgery (STS) risk score calculator to predict morbidity and mortality associated. Examining outcomes of 383,550 mitral valve surgery procedures from the STS Adult Cardiac Surgery Database from 2008-2017, the investigators successfully applied machine learning techniques to construct novel risk models for predicting mortality, prolonged ventilation, renal failure, stroke and deep sternal wound infection following mitral valve replacement. The investigators found that machine learning analysis, which encompassed more than 300 variables for each procedure, produced risk models that were more accurate than the existing STS risk calculator, particularly for mortality, prolonged ventilation and renal failure.

The results of this landmark study represent one of the first published analyses on the use of advanced machine learning methods for the prediction of surgical risk in the context of mitral valve surgery. Moreover, combining the power of a large dataset from the largest national cardiac surgery registry with the innovative logic of machine learning, the investigators have shown that artificial intelligence can be successfully used in the field of medical prediction to provide clinicians with user-friendly tools that can be easily incorporated in their practice and improve risk-benefit analysis and recommendations for patients contemplating mitral valve surgical intervention.
Defining Carotid Access as the Optimal Alternative Access Approach for Transcatheter Aortic Valve Replacement

Despite the availability of lower profile vascular sheaths and valve delivery systems for transcatheter aortic valve replacement (TAVR), approximately 5-15% of TAVR patients currently require alternative vascular access because of unsuitable iliofemoral anatomy that prevents use of the conventional transfemoral approach. Alternative TAVR access routes that have been previously described include the transapical, direct aortic, trans caval, subclavian/axillary, transcarotid and intravascular lithotripsy facilitated transfemoral approaches. In recent years, the transcarotid approach has been proposed as the optimal alternative access TAVR technique with the lowest rate of major complications compared to other alternative access strategies and with hospital costs that are equivalent to the traditional transfemoral approach. Notably, Hartford Hospital has been among a small number of TAVR centers in the STS/ACC TVT registry that have pioneered the use of transcarotid TAVR, and recently was designated the first carotid TAVR training center in the country.

In a 2022 study, Mohiuddin Cheema, MD, and colleagues compared clinical outcomes between the transcarotid approach and the standard transfemoral approach. Transcarotid and transfemoral patients did not differ with respect to in-hospital complications, length of hospital stay or direct hospital costs, as well as one-year mortality, re-admission and quality of life. This data adds to ongoing support for the transcarotid approach as the optimal alternative access for TAVR patients deferred from a transfemoral access.
Reducing Perioperative Bleeding for Coronary Artery Bypass Surgery with Appropriate Thienopyridine Discontinuation

Prior studies have demonstrated that dual antiplatelet therapy (DAPT) with aspirin and an oral P2Y12 receptor inhibitor is more effective than aspirin alone in reducing recurrent thrombotic events and mortality in patients hospitalized with acute coronary syndromes (ACS). Approximately 10 to 15% of ACS patients, however, require CABG following cardiac catheterization that reveals multivessel or left main coronary artery disease. Despite the benefit of DAPT in preventing recurrent ischemic events while awaiting surgical intervention, an increased risk of major bleeding complications has been reported in CABG patients who continue to receive P2Y12 inhibitors within five days of surgery. This time course of thienopyridine discontinuation has recently been challenged for specifically for ticagrelor.

In 2022, Joseph Ingrassi, MD, a in concert with the cardiac surgery department, published a manuscript describing the time course of withdrawal of thienopyridines needed to avoid CABG bleeding. Examining outcomes in more than 2,000 CABG patients treated at Hartford Hospital, Dr. Ingrassi found that clopidogrel exposure within five days of CABG was an independent predictor of bleeding complications, whereas major ticagrelor bleeding effects were confined to drug exposure within three days of surgery. Dr. Ingrassi’s recommendation that only three days of discontinuation are required for ticagrelor is supported by recently updated 2021 ACC/AHA guidelines.

Impact of ticagrelor versus clopidogrel on bleeding outcomes of isolated coronary artery bypass grafting

Joseph J. Ingrassia, Wasiim Mosleh, Chet M. Conner, Jeffrey F. Mather, Deborah S. Loya, David W. Yaffe, Trevor S. Santon, Edinburgh T. Talata, Sean R. McMahon, Sabret W. Hashis, Raymond G. McKay

Background: Increased bleeding risks have been documented in patients exposed to P2Y12 inhibitors within 5 days of coronary artery bypass surgery (CABG). This study aimed to determine the relative CABG bleeding risks of clopidogrel versus ticagrelor exposure and the proper time course of ticagrelor discontinuation prior to surgery.

Methods: Clinical outcomes were assessed in 2017 isolated CABG patients, including 175 who had received P2Y12 inhibitors within 3 days of surgery (155 clopidogrel, 21 ticagrelor, 7prasugrel). BAVC-4 CABG bleeding complications and perioperative blood product usage were assessed in propensity-matched P2Y12-inhibited and non-P2Y12-inhibited cohorts.

Results: P2Y12-inhibited patients (n = 175) in comparison to matched non-P2Y12-inhibited patients (n = 1138) had higher rates of re-operation for bleeding (3.8% vs 1.3%, p = 0.003), postoperative red blood cell transfusion ≥5 units (5.7% vs 1.7%, p = 0.007), and intraoperative and postoperative blood product utilization (42.3% vs 27.1%, p < 0.001, respectively). Univariate predictors of BAVC-4 bleeding included clopidogrel (OR: 2.145; 95% CI: 1.131–4.067; p = 0.039) and ticagrelor discontinued within 3 days of surgery (OR: 2.33; 95% CI: 1.843–4.160; p = 0.040). Multivariable logistic regression demonstrated that only clopidogrel exposure was an independent BAVC-4 bleeding predictor (OR: 1.450; 95% CI: 1.007–3.398; p = 0.048).

Conclusions: Clopidogrel exposure within 5 days of CABG is an independent predictor of BAVC-4 bleeding, whereas major ticagrelor bleeding effects are confined to drug exposure within 3 days of surgery.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Using ERAS to reduce Racial and Ethnic Disparities Associated with Coronary Artery Bypass Grafting

Widespread racial and ethnic disparities have been previously reported in patients undergoing coronary artery bypass grafting (CABG). The implementation of an Enhanced Recovery after Surgery (ERAS) clinical pathway has been proposed as a way to reduce outcome disparities following non-cardiac surgery, but has not been examined in patients requiring CABG.

In combination with Trevor Sutton, MD, from the Hartford Hospital Department of Anesthesia, cardiac surgery investigators published a 2022 report documenting the benefits of using the ERAS to reduce patient morbidity and shorten hospital stay in patients requiring coronary bypass surgery, and specifically documented that this approach resulted in a reduction of healthcare disparities between white and minority patient subgroups with respect to readmission to the intensive care unit and postoperative length of stay. This important study demonstrates the utility of ERAS not only as a quality improvement initiative, but also as a health equity initiative.
Expanding the Boundaries of Cardiac Transplantation

More than 3,500 people in the United States are currently waiting for a heart transplant, and many will have to wait more than six months before a heart becomes available from the limited donor pool. Unfortunately, some patients will die before a heart becomes available, fueling attempts to identify potential donors who have not been previously accepted.

A 2022 report by Abhishek Jaiswal, MD, from the Hartford Hospital Advanced Heart Failure, in concert with investigators from the University of Connecticut School of Pharmacy and the Cleveland Clinic, surveyed 162,586 patients from the Scientific Registry of Transplant Recipients (SRTR) to identify the use of heart transplant donors with impaired renal function, defined as having an estimated glomerular filtration rate ≤ 30 ml/min. Notably, of the 22,780 patients (14%) with renal impairment, more than two-thirds of the hearts from this group were discarded and not used for transplantation. Despite this finding, heart transplant recipients from donors with renal dysfunction fared well with non-significant differences in primary graft failure and a lower adjusted mortality compared to recipients from donors without renal impairment. Dr. Jaiswal and his co-authors conclude, “Increased evaluation and utilization of donors with renal dysfunction has the potential to expand the critically low donor pool.”
Understanding Heart Transplant Outcomes of Patients on Biventricular Mechanical Support and ECMO

Recent changes in the heart transplant (HT) allocation system have identified patients on biventricular support as those individuals with the highest priority for transplantation. There have been contrasting reports on the short- and long-term outcomes of this patient cohort.

In this 2022 report, Hartford Hospital investigators examined the Scientific Registry of Transplant Recipients between 2000 and 2018 to identify 730 HT recipients requiring either BiVAD support (n=528) or use of extracorporeal membrane oxygenation (ECMO) (n=202). BiVAD and ECMO-bridged patients did not differ with respect to risk-adjusted 30-day, 1-, 3- and 5-year survival. Notably, approximately three-fourths of the BiVAD and ECMO-supported patients were alive at five-years post-HT.
Defining ECMO Outcomes Post-Cardiac Surgery

Patients who develop severe myocardial dysfunction following cardiac surgery and require mechanical circulatory support with extracorporeal membrane oxygenation (ECMO) represent a high-risk cohort with increased morbidity and mortality. To delineate prognostic factors of survival in this patient subset, a retrospective analysis of 60 patients who underwent cardiac surgery and required peri-operative ECMO was performed. Of these patients, 52 (86.6%) had refractory cardiogenic shock, 7 (11.6%) had pulmonary insufficiency, and 1 (1.6%) had hemorrhagic shock. All patients required either venous-arterial (VA) (n=53, 88.3%), venous-venous (VV) (n=5, 8.3%), or venous-arterial-venous (VAV) (n=2, 3.3%) ECMO for hemodynamic support.

Overall in-hospital mortality was 60.7% (n = 37). Patients who survived were younger (52 ± 3.3 vs 66 ± 1.5, p < 0.001) with longer hospital stays (35 ± 4.0 vs 20 ± 1.5, p < 0.03). Survivors required fewer blood products (13 ± 2.3 vs 25 ± 2.3, p = 0.02) with a net negative fluid balance (~ 3.5 ± 1.6 vs 3.4 ± 1.6, p = 0.01). Cardiac re-operations worsened survival.

ECMO is a viable rescue strategy for cardiac surgery patients with a 40% survival to discharge rate. Careful attention to volume management and blood transfusion are important markers for potential survival.

ECMO after cardiac surgery: a single center study on survival and optimizing outcomes

Jennifer M. Brewer, Anthony Tran, Jielin Yu, M. Irfan Ali, Constantine M. Poulos, Jonathan Gates, Jason Gluck and David Underhill

Abstract

Background: The study purpose is to examine survival prognostic and extracorporeal membrane oxygenation (ECMO) application outcomes at our tertiary care center.

Methods: This is a retrospective analysis, January 2014 to September 2019. We analyzed 60 patients who underwent cardiac surgery and required peri-operative ECMO. All patients with demographic and intervention data was examined. 52 patients (86.6%) had refractory cardiogenic shock, 7 patients (11.6%) had pulmonary insufficiency, and 1 patient (1.6%) had hemorrhagic shock. All patients required either venous-arterial (VA) (n = 53, 88.3%), venous-venous (VV) (n = 5, 8.3%) or venous-arterial-venous (VAV) (n = 2, 3.3%) ECMO for hemodynamic support. ECMO parameters and common postoperative complications were examined in the setting of survival with comorbidities.

Results: In-hospital mortality was 60.7% (n = 37). Patients who survived were younger (52 ± 3.3 vs 66 ± 1.5, p < 0.001) with longer hospital stays (35 ± 4.0 vs 20 ± 1.5, p < 0.03). Survivors required fewer blood products (13 ± 2.3 vs 25 ± 2.3, p = 0.02) with a net negative fluid balance (~ 3.5 ± 1.6 vs 3.4 ± 1.6, p = 0.01). Cardiac re-operations worsened survival.

Conclusion: ECMO is a viable rescue strategy for cardiac surgery patients with a 40% survival to discharge rate. Careful attention to volume management and blood transfusion are important markers for potential survival.

Keywords: Cardio-thoracic surgery, ECMO, Cardiac transplantation, Critical care, LVAD, Cardiac surgery

Background

Myocardial dysfunction after cardiac surgical intervention occurs in about 3–8% of patients [1, 2]. Patients are typically separated from cardiopulmonary bypass with inotropes/vasoressors or intra-aortic balloon counterpulsation [3–5]. In the event of refractory cardiac and/or pulmonary dysfunction additional mechanical circulatory support may be required. Extracorporeal membrane oxygenation (ECMO) is a bridging mechanical circulatory support with promising results seen in a multitude of post cardiotomy procedures with poor residual cardiac function [1, 6–8]. Prognostic factors previously identified include: preventing left ventricular overloading, pulmonary edema, lung injury, and myocardial damage. Additional prognostic indicators are low oxygen pressure and low oxygen saturation of ECMO tubing, advanced age, pre-operative co-morbidities, the type of surgical procedure, and high blood product requirement [10–17]. We analyzed 60 patients who underwent cardiac surgery and required peri-operative ECMO support from January 2014 to September 2019. The purpose of this study is to delineate prognostic factors of survival, discuss the outcomes, and elaborate on the application of ECMO at a tertiary care center.